站长资源脚本专栏
Python实现曲线拟合的最小二乘法
简介本文实例为大家分享了Python曲线拟合的最小二乘法,供大家参考,具体内容如下模块导入import numpy as npimport gaosi as gs代码"""本函数通过创建增广矩阵,并调用高斯列主元消去法模块进行求解。"""import numpy as npimport gao
本文实例为大家分享了Python曲线拟合的最小二乘法,供大家参考,具体内容如下
模块导入
import numpy as np import gaosi as gs
代码
""" 本函数通过创建增广矩阵,并调用高斯列主元消去法模块进行求解。 """ import numpy as np import gaosi as gs shape = int(input('请输入拟合函数的次数:')) x = np.array([0.6,1.3,1.64,1.8,2.1,2.3,2.44]) y = np.array([7.05,12.2,14.4,15.2,17.4,19.6,20.2]) data = [] for i in range(shape*2+1): if i != 0: data.append(np.sum(x**i)) else: data.append(len(x)) b = [] for i in range(shape+1): if i != 0: b.append(np.sum(y*x**i)) else: b.append(np.sum(y)) b = np.array(b).reshape(shape+1,1) n = np.zeros([shape+1,shape+1]) for i in range(shape+1): for j in range(shape+1): n[i][j] = data[i+j] result = gs.Handle(n,b) if not result: print('增广矩阵求解失败!') exit() fun='f(x) = ' for i in range(len(result)): if type(result[i]) == type(''): print('存在自由变量!') fun = fun + str(result[i]) elif i == 0: fun = fun + '{:.3f}'.format(result[i]) else: fun = fun + '+{0:.3f}*x^{1}'.format(result[i],i) print('求得{0}次拟合函数为:'.format(shape)) print(fun)
高斯模块
# 导入 numpy 模块 import numpy as np # 行交换 def swap_row(matrix, i, j): m, n = matrix.shape if i >= m or j >= m: print('错误! : 行交换超出范围 ...') else: matrix[i],matrix[j] = matrix[j].copy(),matrix[i].copy() return matrix # 变成阶梯矩阵 def matrix_change(matrix): m, n = matrix.shape main_factor = [] main_col = main_row = 0 while main_row < m and main_col < n: # 选择进行下一次主元查找的列 main_row = len(main_factor) # 寻找列中非零的元素 not_zeros = np.where(abs(matrix[main_row:,main_col]) > 0)[0] # 如果该列向下全部数据为零,则直接跳过列 if len(not_zeros) == 0: main_col += 1 continue else: # 将主元列号保存在列表中 main_factor.append(main_col) # 将第一个非零行交换至最前 if not_zeros[0] != [0]: matrix = swap_row(matrix,main_row,main_row+not_zeros[0]) # 将该列主元下方所有元素变为零 if main_row < m-1: for k in range(main_row+1,m): a = float(matrix[k, main_col] / matrix[main_row, main_col]) matrix[k] = matrix[k] - matrix[main_row] * matrix[k, main_col] / matrix[main_row, main_col] main_col += 1 return matrix,main_factor # 回代求解 def back_solve(matrix, main_factor): # 判断是否有解 if len(main_factor) == 0: print('主元错误,无主元! ...') return None m, n = matrix.shape if main_factor[-1] == n - 1: print('无解! ...') return None # 把所有的主元元素上方的元素变成0 for i in range(len(main_factor) - 1, -1, -1): factor = matrix[i, main_factor[i]] matrix[i] = matrix[i] / float(factor) for j in range(i): times = matrix[j, main_factor[i]] matrix[j] = matrix[j] - float(times) * matrix[i] # 先看看结果对不对 return matrix # 结果打印 def print_result(matrix, main_factor): if matrix is None: print('阶梯矩阵为空! ...') return None m, n = matrix.shape result = [''] * (n - 1) main_factor = list(main_factor) for i in range(n - 1): # 如果不是主元列,则为自由变量 if i not in main_factor: result[i] = '(free var)' # 否则是主元变量,从对应的行,将主元变量表示成非主元变量的线性组合 else: # row_of_main表示该主元所在的行 row_of_main = main_factor.index(i) result[i] = matrix[row_of_main, -1] return result # 得到简化的阶梯矩阵和主元列 def Handle(matrix_a, matrix_b): # 拼接成增广矩阵 matrix_01 = np.hstack([matrix_a, matrix_b]) matrix_01, main_factor = matrix_change(matrix_01) matrix_01 = back_solve(matrix_01, main_factor) result = print_result(matrix_01, main_factor) return result if __name__ == '__main__': a = np.array([[2, 1, 1], [3, 1, 2], [1, 2, 2]],dtype=float) b = np.array([[4],[6],[5]],dtype=float) a = Handle(a, b)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。