站长资源脚本专栏
python绘图pyecharts+pandas的使用详解
简介pyecharts介绍pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒为避免绘制缺漏,建议全部安装为了避免下载缓慢,作者全部使用镜像源下载过了pip install -i http
pyecharts介绍
pyecharts 是一个用于生成 Echarts 图表的类库。Echarts 是百度开源的一个数据可视化 JS 库。用 Echarts 生成的图可视化效果非常棒
为避免绘制缺漏,建议全部安装
为了避免下载缓慢,作者全部使用镜像源下载过了
pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-countries-pypkg pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-provinces-pypkg pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-cities-pypkg pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-counties-pypkg pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-china-misc-pypkg pip install -i https://pypi.tuna.tsinghua.edu.cn/simple/ echarts-united-kingdom-pypkg
基础案例
from pyecharts.charts import Bar bar = Bar() bar.add_xaxis(['小嘉','小琪','大嘉琪','小嘉琪']) bar.add_yaxis('得票数',[60,60,70,100]) #render会生成本地HTML文件,默认在当前目录生成render.html # bar.render() #可以传入路径参数,如 bar.render("mycharts.html") #可以将图形在jupyter中输出,如 bar.render_notebook() bar.render_notebook()
from pyecharts.charts import Bar from pyecharts import options as opts # 示例数据 cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu'] data1 = [123, 153, 89, 107, 98, 23] data2 = [56, 77, 93, 68, 45, 67] # 1.x版本支持链式调用 bar = (Bar() .add_xaxis(cate) .add_yaxis('渠道', data1) .add_yaxis('门店', data2) .set_global_opts(title_opts=opts.TitleOpts(title="示例", subtitle="副标")) ) bar.render_notebook()
from pyecharts.charts import Pie from pyecharts import options as opts # 示例数据 cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu'] data = [153, 124, 107, 99, 89, 46] pie = (Pie() .add('', [list(z) for z in zip(cate, data)], radius=["30%", "75%"], rosetype="radius") .set_global_opts(title_opts=opts.TitleOpts(title="Pie-基本示例", subtitle="我是副标题")) .set_series_opts(label_opts=opts.LabelOpts(formatter="{b}: {d}%")) ) pie.render_notebook()
from pyecharts.charts import Line from pyecharts import options as opts # 示例数据 cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu'] data1 = [123, 153, 89, 107, 98, 23] data2 = [56, 77, 93, 68, 45, 67] """ 折线图示例: 1. is_smooth 折线 OR 平滑 2. markline_opts 标记线 OR 标记点 """ line = (Line() .add_xaxis(cate) .add_yaxis('电商渠道', data1, markline_opts=opts.MarkLineOpts(data=[opts.MarkLineItem(type_="average")])) .add_yaxis('门店', data2, is_smooth=True, markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(name="自定义标记点", coord=[cate[2], data2[2]], value=data2[2])])) .set_global_opts(title_opts=opts.TitleOpts(title="Line-基本示例", subtitle="我是副标题")) ) line.render_notebook()
from pyecharts import options as opts from pyecharts.charts import Geo from pyecharts.globals import ChartType import random province = ['福州市', '莆田市', '泉州市', '厦门市', '漳州市', '龙岩市', '三明市', '南平'] data = [(i, random.randint(200, 550)) for i in province] geo = (Geo() .add_schema(maptype="福建") .add("门店数", data, type_=ChartType.HEATMAP) .set_series_opts(label_opts=opts.LabelOpts(is_show=False)) .set_global_opts( visualmap_opts=opts.VisualMapOpts(), legend_opts=opts.LegendOpts(is_show=False), title_opts=opts.TitleOpts(title="福建热力地图")) ) geo.render_notebook()
啊哈这个还访问不了哈
ImportError: Missing optional dependency ‘xlrd'. Install xlrd >= 1.0.0 for Excel support Use pip or conda to install xlrd.
20200822pyecharts+pandas 初步学习
作者今天学习做数据分析,有错误请指出
下面贴出源代码
# 获取数据 import requests import json china_url = 'https://view.inews.qq.com/g2/getOnsInfo"text-align: center"># 将json数据转存到Excel中 import pandas as pd #读取文件 with open('./国内疫情.json',encoding='utf-8') as f: data = f.read() #将数据转为python数据格式 data = json.loads(data) type(data)#字典类型 lastUpdateTime = data['lastUpdateTime'] #获取中国所有数据 chinaAreaDict = data['areaTree'][0] #获取省级数据 provinceList = chinaAreaDict['children'] # 获取的数据有几个省市和地区 print('数据共有:',len(provinceList),'省市和地区') #将中国数据按城市封装,例如【{湖北,武汉},{湖北,襄阳}】,为了方便放在dataframe中 china_citylist = [] for x in range(len(provinceList)): # 每一个省份的数据 province =provinceList[x]['name'] #有多少个市 province_list = provinceList[x]['children'] for y in range(len(province_list)): # 每一个市的数据 city = province_list[y]['name'] # 累积所有的数据 total = province_list[y]['total'] # 今日的数据 today = province_list[y]['today'] china_dict = {'省份':province, '城市':city, 'total':total, 'today':today } china_citylist.append(china_dict) chinaTotaldata = pd.DataFrame(china_citylist) nowconfirmlist=[] confirmlist=[] suspectlist=[] deadlist=[] heallist=[] deadRatelist=[] healRatelist=[] # 将整体数据chinaTotaldata的数据添加dataframe for value in chinaTotaldata['total'] .values.tolist():#转成列表 confirmlist.append(value['confirm']) suspectlist.append(value['suspect']) deadlist.append(value['dead']) heallist.append(value['heal']) deadRatelist.append(value['deadRate']) healRatelist.append(value['healRate']) nowconfirmlist.append(value['nowConfirm']) chinaTotaldata['现有确诊']=nowconfirmlist chinaTotaldata['累计确诊']=confirmlist chinaTotaldata['疑似']=suspectlist chinaTotaldata['死亡']=deadlist chinaTotaldata['治愈']=heallist chinaTotaldata['死亡率']=deadRatelist chinaTotaldata['治愈率']=healRatelist #拆分today列 today_confirmlist=[] today_confirmCutlist=[] for value in chinaTotaldata['today'].values.tolist(): today_confirmlist.append(value['confirm']) today_confirmCutlist.append(value['confirmCuts']) chinaTotaldata['今日确诊']=today_confirmlist chinaTotaldata['今日死亡']=today_confirmCutlist #删除total列 在原有的数据基础 chinaTotaldata.drop(['total','today'],axis=1,inplace=True) # 将其保存到excel中 from openpyxl import load_workbook book = load_workbook('国内疫情.xlsx') # 避免了数据覆盖 writer = pd.ExcelWriter('国内疫情.xlsx',engine='openpyxl') writer.book = book writer.sheets = dict((ws.title,ws) for ws in book.worksheets) chinaTotaldata.to_excel(writer,index=False) writer.save() writer.close() chinaTotaldata作者这边还有国外的,不过没打算分享出来,大家就看看,总的来说我们国内情况还是非常良好的