站长资源脚本专栏

python 检测图片是否有马赛克

整理:jimmy2025/1/11浏览2
简介首先是Canny边缘检测,将图片的边缘检测出来,参考博客https://www.cnblogs.com/techyan1990/p/7291771.html原理讲的很清晰,给原博主一个赞边缘检测之后按照正方形检索来判定是否是马赛克内容原理知晓了之后就很好做了话说MATLAB转化为python

首先是Canny边缘检测,将图片的边缘检测出来,参考博客https://www.cnblogs.com/techyan1990/p/7291771.html

原理讲的很清晰,给原博主一个赞

边缘检测之后按照正方形检索来判定是否是马赛克内容

原理知晓了之后就很好做了

话说MATLAB转化为python的过程还是很有趣的

from PIL import Image
import numpy as np
import math
import warnings

#算法来源,博客https://www.cnblogs.com/techyan1990/p/7291771.html和https://blog.csdn.net/zhancf/article/details/49736823
highhold=200#高阈值
lowhold=40#低阈值
warnings.filterwarnings("ignore")
demo=Image.open("noise_check//23.jpg")
im=np.array(demo.convert('L'))#灰度化矩阵
print(im.shape)
print(im.dtype)
height=im.shape[0]#尺寸
width=im.shape[1]
gm=[[0 for i in range(width)]for j in range(height)]#梯度强度
gx=[[0 for i in range(width)]for j in range(height)]#梯度x
gy=[[0 for i in range(width)]for j in range(height)]#梯度y
theta=0#梯度方向角度360度
dirr=[[0 for i in range(width)]for j in range(height)]#0,1,2,3方位判定值
highorlow=[[0 for i in range(width)]for j in range(height)]#强边缘、弱边缘、忽略判定值2,1,0
rm=np.array([[0 for i in range(width)]for j in range(height)])#输出矩阵
#高斯滤波平滑,3x3
for i in range(1,height-1,1):
 for j in range(1,width-1,1):
 rm[i][j]=im[i-1][j-1]*0.0924+im[i-1][j]*0.1192+im[i-1][j+1]*0.0924+im[i][j-1]*0.1192+im[i][j]*0.1538+im[i][j+1]*0.1192+im[i+1][j-1]*0.0924+im[i+1][j]*0.1192+im[i+1][j+1]*0.0924
for i in range(1,height-1,1):#梯度强度和方向
 for j in range(1,width-1,1):
 gx[i][j]=-rm[i-1][j-1]+rm[i-1][j+1]-2*rm[i][j-1]+2*rm[i][j+1]-rm[i+1][j-1]+rm[i+1][j+1]
 gy[i][j]=rm[i-1][j-1]+2*rm[i-1][j]+rm[i-1][j+1]-rm[i+1][j-1]-2*rm[i+1][j]-rm[i+1][j+1]
 gm[i][j]=pow(gx[i][j]*gx[i][j]+gy[i][j]*gy[i][j],0.5)
 theta=math.atan(gy[i][j]/gx[i][j])*180/3.1415926
 if theta>=0 and theta<45:
  dirr[i][j]=2
 elif theta>=45 and theta<90:
  dirr[i][j]=3
 elif theta>=90 and theta<135:
  dirr[i][j]=0
 else:
  dirr[i][j]=1
for i in range(1,height-1,1):#非极大值抑制,双阈值监测
 for j in range(1,width-1,1):
 NW=gm[i-1][j-1]
 N=gm[i-1][j]
 NE=gm[i-1][j+1]
 W=gm[i][j-1]
 E=gm[i][j+1]
 SW=gm[i+1][j-1]
 S=gm[i+1][j]
 SE=gm[i+1][j+1]
 if dirr[i][j]==0:
  d=abs(gy[i][j]/gx[i][j])
  gp1=(1-d)*E+d*NE
  gp2=(1-d)*W+d*SW
 elif dirr[i][j]==1:
  d=abs(gx[i][j]/gy[i][j])
  gp1=(1-d)*N+d*NE
  gp2=(1-d)*S+d*SW
 elif dirr[i][j]==2:
  d=abs(gx[i][j]/gy[i][j])
  gp1=(1-d)*N+d*NW
  gp2=(1-d)*S+d*SE
 elif dirr[i][j]==3:
  d=abs(gy[i][j]/gx[i][j])
  gp1=(1-d)*W+d*NW
  gp2=(1-d)*E+d*SE
 if gm[i][j]>=gp1 and gm[i][j]>=gp2:
  if gm[i][j]>=highhold:
  highorlow[i][j]=2
  rm[i][j]=1
  elif gm[i][j]>=lowhold:
  highorlow[i][j]=1
  else:
  highorlow[i][j]=0
  rm[i][j]=0
 else:
  highorlow[i][j]=0
  rm[i][j]=0
for i in range(1,height-1,1):#抑制孤立低阈值点
 for j in range(1,width-1,1):
 if highorlow[i][j]==1 and (highorlow[i-1][j-1]==2 or highorlow[i-1][j]==2 or highorlow[i-1][j+1]==2 or highorlow[i][j-1]==2 or highorlow[i][j+1]==2 or highorlow[i+1][j-1]==2 or highorlow[i+1][j]==2 or highorlow[i+1][j+1]==2):
  #highorlow[i][j]=2
  rm[i][j]=1
#img=Image.fromarray(rm)#矩阵化为图片
#img.show()
#正方形法判定是否有马赛克
value=35
lowvalue=16
imgnumber=[0 for i in range(value)]
for i in range(1,height-1,1):#性价比高的8点判定法
 for j in range(1,width-1,1):
 for k in range(lowvalue,value):
  count=0
  if i+k-1>=height or j+k-1>=width:continue
  if rm[i][j]!=0:count+=1#4个顶点
  if rm[i+k-1][j]!=0:count+=1
  if rm[i][j+k-1]!=0:count+=1
  if rm[i+k-1][j+k-1]!=0:count+=1
  e=(k-1)//2
  if rm[i+e][j]!=0:count+=1
  if rm[i][j+e]!=0:count+=1
  if rm[i+e][j+k-1]!=0:count+=1
  if rm[i+k-1][j+e]!=0:count+=1
  if count>=6:
  imgnumber[k]+=1
for i in range(lowvalue,value):
 print("length:{} number:{}".format(i,imgnumber[i]))

结果图可以上一下了

可以看出在一定程度上能够检测出马赛克内容

原图

python 检测图片是否有马赛克

边缘图案

python 检测图片是否有马赛克

正方形数量

python 检测图片是否有马赛克

以上就是python 检测图片是否有马赛克的详细内容,更多关于python 检测图片马赛克的资料请关注其它相关文章!